Webinar Will Begin Momentarily

Become an Orgain Ambassador Today!

Request an Orgain Ambassador account to access our on-line sampling portal so you can share Orgain products and discount offers with your patients or clients.

healthcare.orgain.com/ambassador

Professional Education Series Support. Inform. Educate. Empower.

The Physiological Connections Between Diet & Sleep and Associated Risks for Developing Chronic Diseases

TODAY'S AGENDA:

- Introduction & Housekeeping
- Speaker Introduction
- Presentation
- Q&A
- Closing

WEBINAR HOST:

Acacia Wright, RD, CD Sr. Manager of Nutrition Communications Orgain, LLC

WEBINAR PRESENTER:

Marie-Pierre St-Onge, Ph.D, CCSH, FAHA Associate Professor of Nutritional Medicine, Director of Columbia University Irving Medical Center Sleep center of Excellence

The Physiological Connections Between Diet & Sleep: Associated Risks for Developing Chronic Diseases

> Marie-Pierre St-Onge, PhD, CCSH, FAHA Associate Professor, Division of General Medicine Director, Center of Excellence for Sleep & Circadian Research Department of Medicine, Columbia University Irving Medical Center

> > VAGELOS COLLEGE OF Physicians and Surgeons

COLUMBIA

Learning Objectives

- Explain the relationships between sleep, obesity, and chronic diseases
 - Epidemiological evidence
 - Clinical intervention studies
- Describe mechanisms by which sleep influences obesity and chronic disease risk
 - Short & long-term effects of sleep restriction
 - Patterns of sleep
- Discuss influence of diet on sleep

SLEEP DURATION RECOMMENDATION

Hirshkowitz et al., Sleep Health 2015;1:40-3.

Sleep Duration in Males vs Females: Weekdays vs Weekends

In general, females report 20 minutes longer sleep than males across the lifespan & fewer report short sleep duration

Cao & Yang, Sleep Epidemiol 2022;2:100026.

Rising prevalence of short sleep in US adults

Age-adjusted prevalence of sleeping ≤6 h/night:

- 1985: 22.3%
- 2012: 29.2%

Age-adjusted prevalence of sleeping 7-8 h/night:

- 1985: 65.9%
- 2012: 62.8%

Ford et al. Sleep 2015;38:829-32.

Increased odds of developing obesity in short sleepers

Reference	log[Odds Ratio]	SE	Weight, %	Odds Ratio IV, Random, 95%CI	Г	Odds Ratio V, Random, 95%CI
Sleep duration: < 5 h		C		17		
Itani 2011 (women)	0.5988	0.2954	1.4	1.82 [1.02-3.25]		· · · · · · · · · · · · · · · · · · ·
Itani 2011 (men)	0.0862	0.0755	6.5	1.09 [0.94-1.26]		+
Vgontzas 2013	0.077	0.4137	0.8	1.08 [0.48-2.43]		•
Watanabe 2010 (women)	-1.0498	0.9928	0.1	0.35 [0.05-2.45]		
Watanabe 2010 (men)		0.1733	3.1	1.91 [1.36-2.68]		
Xiao 2013 (women)		0.1406	4.0	1.37 [1.04-1.80]		
Xiao 2013 (men)	0.3716	0.1598	3.5	1.45 [1.06-1.98]		
Subtotal (95%CI)			19.5	1.38 [1.11-1.71]		-
Heterogeneity: $Tau^2 = 0.04$: Chi ² = 13.93, df =	6(P = 0)	$(0.03); I^2 = 579$	6		
Test for overall effect: $Z =$						
Sleep duration: 5.0–5.9 h						
Kobayashi 2012		0.1582	3.5	1.50 [1.10-2.05]		
Kobayashi 2012		0.1382	7.1	1.49 [1.32–1.68]		12-07
Nagai 2013		0.1726	3.2	1.08 [0.77–1.55]		
Stranges 2008		0.1720		1.65 [1.22-2.23]		
Theorell-Haglöw 2014		0.2686	1.7	1.71 [1.01-2.89]		
Vgontzas 2013		0.1814		1.27 [0.89–1.81]		
Watanabe 2010 (women)	-0.1985		1.0			
Watanabe 2010 (women)		0.3003	5.8	0.82 [0.40-1.68]		
				1.50 [1.25–1.80]		
Xiao 2013 (women) Xiao 2013 (men)		0.0464	7.8	1.15 [1.05–1.26] 1.03 [0.93–1.14]		
Subtotal (95% CI)	0.0290	0.0521	44.1	1.30 [1.14–1.48]		
Heterogeneity: $Tau^2 = 0.03$	Chi2 - 26 40 46-	0 (D-0				
Test for overall effect: $Z =$		()	<i></i>	376		
Sleep duration: 6–7 h						
	1.0042	0.2150	1.2	2 72 11 47 5 071		
Gutiérrrez-Repiso 2014		0.3158	1.3	2.73 [1.47-5.07]		
Kobayashi 2012		0.0802	6.3	1.10 [0.94–1.29]		111 C.A.
Kobayashi 2018		0.0542		1.19 [1.07–1.32]		
McMahon 2019		0.2672	1.7	1.30 [0.77-2.19]		The second se
Nagai 2013		0.1024		0.99 [0.81–1.21]		
Stranges 2008		0.1005	5.5	1.23 [1.01–1.50]		
Vgontzas 2013		0.4113		1.03 [0.46-2.31]		
Watanabe 2010 (women)		0.2892	1.5	1.04 [0.59–1.83]		
Watanabe 2010 (men) Subtotal (95% CI)	0.131	0.0772	6.5 36.3	1.14 [0.98–1.33] 1.16 [1.06–1.26]		•
Heterogeneity: $Tau^2 = 0.00$ Test for overall effect: $Z =$		8 (P = 0).19); <i>I</i> ² = 28%	6		
Total (95% CI)			100.0	1.26 [1.17, 1.36]		•
Heterogeneity: $Tau^2 = 0.02$; Chi ² = 64.15, df =	25 (P=	0.0001 ; $I^2 =$	61%		<u> </u>
Test for overall effect: $Z =$			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	11010	0.2 0.5	1 2
Test for subgroup diference		2/0-1	0 170 12 - 42	60/		

Costa Guimaraes et al. Nutr Rev 2022;80:983-1000.

Increased subclinical atherosclerotic burden associated with poor sleep

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Dominguez et al., J Am Coll Cardiol 2019;73:134-44.

Increased odds of CVD in individuals with sleep problems: NHANES 2005-2008

	Model 1	Model 2	Model 3
	OR (95% CI)	OR (95% CI)	OR (95% CI)
	<i>P</i>	<i>P</i>	P
Sleep duration			
<7 vs. 7-8 h	1.57 (1.26, 1.97)	1.44 (1.16, 1.80)	1.42 (1.13, 1.78)
	***P < 0.001	**P = 0.008	*P = 0.025
>8 vs. 7-8 h	1.54 (1.03, 2.31)	1.51 (0.97, 2.33)	1.43 (0.92, 2.22)
	* $P = 0.047$	P = 0.092	P = 0.163
Sleep-onset latence	y time		
<5 vs. 5-30 min	0.79 (0.59, 1.06)	0.77 (0.58, 1.03)	0.77 (0.57, 1.02)
	P = 0.130	P = 0.108	P = 0.121
>30 vs. 5-30 min	1.77 (1.35, 2.32)	1.57 (1.17, 2.11)	1.59 (1.17, 2.15)
	*** $P < 0.001$	*P = 0.012	*P = 0.025
Sleep problems	and the second se	1.0	
No	Reference	Reference	Reference
Yes	1.96 (1.62, 2.38)	1.74 (1.42, 2.13)	1.75 (1.41, 2.16)
	***P < 0.001	***P < 0.001	**P = 0.001
OSA symptoms	1. State 1.	10 million 10	100
No	Reference	Reference	Reference
Yes	1.32 (1.08, 1.61)	1.13 (0.91, 1.40)	1.12 (0.89, 1.40)
	*P = 0.011	P = 0.303	P = 0.367
Daytime sleepines	s		
No	Reference	Reference	Reference
Yes	1.75 (1.44, 2.13)	1.52 (1.25, 1.85)	1.54 (1.25, 1.89)
	***P < 0.001	**P = 0.001	**P = 0.004

Kadier et al. Frontiers CV Med 2022; Aug 4.

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Increased risk of all-cause/CVD mortality in short & long sleepers, NHANES 2005-2014

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Jin et al. Frontiers Pub Health 2002; July 15.

Associations between Life's Simple 7 and sleep quality in women

moderate to high AHA LS7 and good sleep quality

Women who slept ≥7 h/night have higher LS7 scores and are more likely to meet >4 metrics

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Makarem et al. Sleep Health 2019;5:501-8.

Poor sleep is associated with poor dietary intakes in women

Predictor	Outcome	B (SE)	p-value
Sleep quality	Food weight	79.6 (49.1)	0.106
(PSQI >5 vs. ≤5)	Added sugars	3.41 (1.57)	0.031
	% Unsaturated fats	-1.41 (0.50)	0.005
	Energy intake	108 (82)	0.184
Sleep onset latency	Food weight	235.2 (79.6)	0.003
(≤ 15 m vs. > 60 m)	Added sugars	2.97 (2.59)	0.252
	% Unsaturated fats	-0.95 (0.83)	0.253
	Energy intake	426 (132)	0.001
Insomnia	Food weight	116.0 (48.8)	0.018
(Yes vs. No)	Added sugars	1.87 (1.58)	0.235
	% Unsaturated fats	-1.25 (0.50)	0.013
	Energy intake	205 (81)	0.012

*PSQI: Pittsburg Sleep Quality Index; SOL: Sleep Onset Latency; ISI: Insomnia Severity Index **Models are adjusted for age, BMI, race/ethnicity, education, and health insurance status

Developing Life's Essential 8

Association of the AHA LS7 Score and Alternate CVH Scores that Include Sleep Metrics with CVD Incidence in Cox Proportional Hazards Models

Makarem et al. JAHA, in press.

Findings from epidemiological studies

- Short sleepers have risk of obesity than adequate sleepers
- Short & disordered sleep is associated with higher CVD risk
 - Poor sleep is associated with lifestyle behaviors that predict greater CVD risk

But what about causality?

Factors influencing risk of obesity & its comorbities

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Fruhbeck et al. Lancet Diab Endocrinol 2018;6:164-6.

Effects of sleep restriction on energy balance & food intake regulation

Sleep restriction alters neuronal responses to foods

- Food>Nonfood Restricted Sleep
- Food stimuli increased regional brain activity in the OFC, insula, and regions of the basal ganglia and limbic system after restricted sleep
- Restricted sleep induces a state of greater responsiveness to food stimuli and heightened awareness of the rewarding properties of food

How does the brain respond to food stimuli in the sleep restricted state?

- Unhealthy foods activate the areas of the brain associated with reward and hedonic functions
 - Restricting sleep can increase salience of unhealthy food
 - Restricting sleep promotes hedonic hunger
- During habitual sleep, up-regulation of the cognitive control centers
 - Could signify improved food restraint behavior

How does sleep influence homeostatic controls of food intake?

- Increase tended to be greatest for calorie-dense high carbohydrate foods
- Increase in appetite for fruits and vegetables of lesser magnitude

Spiegel et al., Ann Intern Med 2004;141:846-50.

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

St-Onge et al., Am J Clin Nutr 2011;94:410-6.

Impact of sleep restriction on 24-hour energy expenditure

COLUMBIA VAGELOS COLLEGE OF Physicians and Surgeons

Shechter et al., Am J Clin Nutr 2013;98:1433-9.

Acute sleep restriction reduces physical activity

- Men spent either 4 or 8 h in bed for 2 nights
- Energy expenditure was measured by actigraphy during outpatient (day 1) and inpatient (day 2) days

Schmid et al., Am J Clin Nutr 2009;90:1476-82.

Evidence of causality: Sleep restriction

2-week inpatient intervention:

- N=12 (9 M)
- Age 26.5±5.8 y
- BMI 24.6±3.7 kg/m²
- Habitual sleep 7.4±1.0 h
 - -SR=4.3±0.4 h/night
 - -HS=8.0±0.5 h/night

No difference in energy expenditure

Difference in energy intake between conditions:

• 257 kcal/d

Difference in change in body weight:

• 0.5 kg

Covassin et al. J Am Coll Cardiol 2022;79:1254-65

Meta-analysis of randomized clinical trials of sleep restriction: Body weight

Effect of longer, milder sleep restriction on body weight

- Young, healthy males, age 20-30 y, BMI 19-26 kg/m²
- Randomized to maintain regular sleep (7-7.5 h/night) or restrict their sleep by 1.5 h for 3 weeks
 - Actual restriction 1 h:13 min-1 h:30 min

Robertson et al., Metabolism 2013;62:204-11.

Next step: What is the impact of 'life-like' sleep restriction conditions?

- To establish if there is a causal relation between sustained, mild sleep restriction (SR) and obesity risk using a randomized crossover clinical intervention
 - 2 phases of 6 weeks with either habitual (adequate) sleep or sleep reduced by 1.5 h (delayed bedtimes)
 - Participants have adequate sleep duration, >7 h/night, at screening
 - Determine effects of SR on body weight, body composition, and other lifestyle behaviors

Mild Sleep Restriction Increases Body Weight

- Sleep restriction results more eating occasions and longer eating window
 - This is associated with higher energy intakes and worse diet quality

Sleep restriction increases sedentary behavior & light physical activity in men and women

Increased by 12.5±1.1 min/d over 6 wk in SR vs AS (P<0.0001)

Increased by 1.1±0.4 min/d over 6 wk in SR relative to AS (P<0.01)

Zuraikat et al. Circulation 2021;143:O35.

Impact of Sleep Restriction on Moderate-to-Vigorous Physical Activity in Men and Women

Increased by 1.1±0.4 min/d over 6 wk in SR relative to AS (P<0.01)

Zuraikat et al. Circulation 2021;143:O35.

Higher blood pressure in women undergoing short sleep duration

The effects of sleep restriction on 24-h systolic blood pressure were almost twice as high in post-menopausal compared to premenopausal women

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

St-Onge et al. Am Heart J 2020;223:12-22. Makarem et al. Hypertens 2021;77:e50-2.

Sleep restriction increases hematopoeisis

COLUMBIA VAGELOS COLLEGE OF Physicians and Surgeons

McAlpine et al. J Experimental Med 2022;219:e20220081.

Impact of short & catch-up sleep on cardiometabolic risk factors

Lasselin et al. Brain Behav Immun 2015;47:93-9.

Impact of short & catch-up sleep on food intake

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Spaeth et al. Nutrients 2020:12:2694.

Dietary intakes across different categories of sleep variability in MESA

Diet		Sleep Du	ration SD		P-value
Outcome	≤ 60 min (n=673)	61-90 min (n=529)	91-120 min (n=392)	> 120 min (n=311)	for trend
aMed Score	4.27 ± 1.82	4.08 ± 1.86	4.11 ± 1.81	4.05 ± 1.80	<0.01
Fruits	1.34 ± 0.98	1.31 ± 1.08	1.31 ± 1.08	1.28 ± 1.09	0.002
Vegetables	1.18 ± 0.85	1.17 ± 0.87	1.19 ± 0.89	1.23 ± 0.95	0.212
Whole grains	0.63 ± 0.50	0.60 ± 0.48	0.59 ± 0.49	0.56 ± 0.52	<0.001
Nuts/Seeds	0.33 ± 0.35	0.27 ± 0.34	0.26 ± 0.34	0.23 ± 0.30	<0.01
Legumes	0.15 ± 0.17	0.17 ± 0.23	0.17 ± 0.21	0.16 ± 0.23	0.802
Red meat	0.24 ± 0.19	0.22 ± 0.20	0.25 ± 0.21	0.24 ± 0.20	0.090
Fish	0.15 ± 0.15	0.16 ± 0.20	0.17 ± 0.16	0.20 ±0.20	<0.01
Alcohol	3.41 ± 9.32	3.17 ± 7.84	2.69 ± 5.60	2.70 ± 6.18	0.873
MUFA	14.33 ± 4.01	14.14 ± 3.94	14.23 ± 4.05	14.45 ± 4.04	0.358
Saturated fat	10.41 ± 3.21	10.52 ± 3.06	10.16 ± 3.18	10.60 ± 3.22	0.043
Energy intake	1692 ± 770	1688 ± 775	1735 ± 869	1778 ± 914	0.01

Diet variables energy adjusted as: servings/1000 kcal (fruits, vegetables, whole grains, nuts/seeds, legumes, red meat, fish), %kcal (MUFA, SFA), g/1000 kcal (alcohol)

Zuraikat et al. Circulation 2021;143:MP05.

High sleep variability & short sleep duration associated with reduced weight loss

- Participants in PREDIMED-Plus, a Mediterranean diet intervention with vs without caloric restriction
 - Adults, 55-75 y, with BMI 27-40 kg/m^2

	Tertiles of sleep variability (h)					Sleep variability (h)	
	1 (lowest)	2	3 (highest)	p Value 2 vs 1	p Value 3 vs 1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	p Value
Weight, kg	1 mar						
n	630	629	629		100 m 1	1888	
12-month change	-2.3 (-2.6 to -2.0)	-2.1 (-2.5 to -1.8)	-1.7 (-2.0 to -1.4)			-2.1 (-2.2 to -1.9)	Sec. 2.
Difference vs first tertile ^a	0 (ref.)	0.1 (-0.3 to 0.5)	0.5 (0.1 to 0.9)	0.553	0.020	0.95 (0.06 to 1.8)	0.037
Difference vs first tertile ^b	0 (ref.)	0.1 (-0.3 to 0.6)	0.5 (0.1 to 0.9)	0.548	0.021	0.88 (-0.01 to 1.8)	0.052
Body mass index, kg/m ²							
n	628	628	627	-		1888	
12-month change	-0.8 (-0.9 to -0.7)	-0.8 (-0.9 to -0.6)	-0.6 (-0.7 to -0.5)	1	- A - A - A - A - A - A - A - A - A - A	-0.7 (-0.8 to -0.7)	6 Carros
Difference vs first tertile ^a	0 (ref.)	0.06 (-0.1 to 0.2)	0.2 (0.04 to 0.4)	0.481	0.016	0.36 (0.03 to 0.7)	0.033
Difference vs first tertileb	0 (ref.)	0.05 (-0.1 to 0.2)	0.2 (0.04 to 0.4)	0.507	0.015	0.34 (0.01 to 0.7)	0.043
Waist circumference, cm							
n	600	599	599			1888	
12-month change	-2.5 (-3.0 to -2.1)	-2.6 (-3.0 to -2.1)	-1.9 (-2.3 to -1.4)			-2.3 (-2.6 to -2.1)	
Difference vs first tertile ^a	0 (ref.)	-0.2 (-0.8 to 0.4)	0.4 (-0.1 to 1.0)	0.496	0.148	0.7 (-0.5 to 1.9)	0.247
Difference vs first tertileb	0 (ref.)	-0.1 (-0.7 to 0.4)	0.4 (-0.2 to 1.0)	0.536	0.156	0.6 (-0.6 to 1.7)	0.345

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Papandreou et al. Int J Obes 2020;44:330-9.

Sleep stability & body composition

N=36 women

Age ≥20 y

BMI 20-33 kg/m²

COLUMBIA

Habitual sleep \geq 7 h/night

Undergoing 6-wk period of maintained adequate sleep with prescribed bed and wake times based on usual habits

Grouped by change in bedtime variability from screening

Variable	Increased/same bedtime variability $(N = 8)$	Reduced bedtime variability $(N=29)$	P value*
Age, years	36.9±15.0	34.4 ± 11.8	0.621
Race			0.663
White	5 (63)	14 (48)	
Other	3 (37)	15 (52)	
Baseline weight, kg	62.2 ± 5.0	66.5 ± 7.8	0.153
Baseline BMI, kg/m ²	23.5 ± 2.1	25.1 ± 3.0	0.190
Baseline sleep duration, min	453.3±29.3	455.2 ± 30.2	0.875
Baseline bedtime	12:00 a.m.	10:48 p.m.	0.109
Baseline bedtime SD, min	49.7±9.5	57.2 ±27.4	0.218
Weight change, kg	0.48 ± 1.19	-0.66 ± 1.37	0.059
TAT change, L ^a	0.63 ± 0.41	-0.52 ± 0.98	< 0.001
VAT change, L	0.05 ± 0.17	-0.03 ± 0.10	0.297
SAT change, L	0.56 ± 0.31	-0.48 ± 0.86	< 0.001
WBV no lungs change, L	0.23 ± 0.91	-0.75 ± 0.90	0.016
IMAT change, L	0.03 ± 0.03	-0.01 ± 0.12	0.134
SM change, L	-0.08 ± 0.49	-0.19 ± 0.47	0.602
Leukocyte platelet aggregates, % ^b	8.42±16.59	-8.42 ± 10.82	0.011

Sleep is Integral to Good Lifestyle Habits Compatible With Cardiovascular Health

Wang et al, Eur Heart J 2018;0:1-10.

Food intake during a controlled diet vs ad lib diet when sleep is sufficient

Nutrient content	Controlled diet	Ad lib diet
Energy, kcal	2055	2518
Protein, %En	17	14
Carbohydrates, %En	53	54.6
Fat, %En	31	32.7
Saturated fat, %En	7.5	10

St-Onge et al. J Clin Sleep Med 2016;12:19-24.

Sleep after a controlled diet vs ad lib diet

Sleep parameter	Controlled diet	Ad lib diet	P- value
Total sleep time, min	453.5 ± 44.4	455.1 ± 30.2	0.86
Stage 1, min	52.3 ± 21.8	56.2 ± 18.8	0.18
Stage 2, min	240.3 ± 42. 9	245.8 ± 35.5	0.45
Slow wave sleep, min	29.3 ± 13.9	24.6 ± 12.8	0.043
Rapid-eye movement sleep, min	91.6 ± 17.8	96.4 ± 18.2	0.19
Sleep onset latency, min	16.9 ± 11.1	29.2 ± 23.1	0.0085
Arousals	143.2 ± 52.1	143.4 ± 51.9	0.98

St-Onge et al. J Clin Sleep Med 2016;12:19-24.

Relation between diet and sleep after a day of ad lib intakes

Sleep parameter	Fiber, g	Sugar, %En	Non-sugar/non- fiber CHO, %En	Saturated fat, %En
Stage 1, % sleep time	-0.19 ± 0.07	0.08 ± 0.17	0.04 ± 0.03	0.03 ± 0.21
Slow wave sleep, % sleep time	0.26 ± 0.11	-0.18 ± 0.25	-0.04 ± 0.04	-0.71 ± 0.32
Arousals	-0.11 ± 0.81	4.34 ± 1.86	0.66 ± 0.31	2.17 ± 2.40

Data suggest that a high-fiber diet, with low intake of sugars, is associated with better sleep depth and architecture

Could diet improve sleep in those with sleep disorders??

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

St-Onge et al. J Clin Sleep Med 2016;12:19-24.

Adherence to Mediterranean Diet associated with sleep quality at 1 y

Predictor	Outcome	β (SE) ^b	p-Value	β (SE) ^c	p-Value
	PSQI total score	-0.30 (0.10)	< 0.01	-0.31 (0.08)	< 0.0001
aMed diet	Sleep onset latency	-0.61 (0.65)	0.35	-0.71 (0.59)	0.23
score	Sleep efficiency	1.20 (0.35)	< 0.001	1.21 (0.33)	< 0.001
	Sleep disturbances	-0.30 (0.12)	0.01	-0.35 (0.10)	< 0.001
1 Mar - 1 June	PSQI total score	-0.16 (0.07)	0.02	-0.19 (0.05)	< 0.001
Fruits and	Sleep onset latency	-0.41 (0.44)	0.36	-0.31 (0.40)	0.44
vegetables	Sleep efficiency	0.56 (0.24)	0.02	0.52 (0.22)	0.02
1.1.1.1.1.1	Sleep disturbances	-0.18 (0.08)	0.03	-0.15 (0.07)	0.02
	PSQI total score	-0.10 (0.16)	0.55	-0.24 (0.13)	0.06
Legumes	Sleep onset latency	-1.13 (1.03)	0.27	-1.21 (0.94)	0.20
Legumes	Sleep efficiency	1.36 (0.55)	0.01	1.46 (0.52)	< 0.01
1.0	Sleep disturbances	0.17 (0.19)	0.39	-0.08 (0.16)	0.62
	PSQI total score	0.01 (0.21)	0.96	0.02 (0.17)	0.92
Nut	Sleep onset latency	0.09 (1.35)	0.95	0.25 (1.23)	0.84
Nuts	Sleep efficiency	-0.47 (0.72)	0.51	-0.36 (0.68)	0.60
	Sleep disturbances	-0.26 (0.25)	0.31	-0.09 (0.20)	0.65
	PSQI total score	-0.68 (0.39)	0.08	-0.55 (0.30)	0.07
	Sleep onset latency	-0.94 (2.48)	0.71	-1.09 (2.26)	0.63
Dark breads	Sleep efficiency	2.07 (1.33)	0.12	1.96 (1.26)	0.12
	Sleep disturbances	-0.43 (0.47)	0.36	-0.67 (0.38)	0.08

Zuraikat et al. Nutrients 2020;12:2830.

Odds ratio for associations between Mediterranean diet score and sleep: MESA Exam 5

Alternate	Sleep duration	Sleep duration	Sleep duration	Insomnia
Mediterranean	6-7 h/night vs	7-8 h/night vs	>8 h/night vs	Symptoms vs
Diet Score	<6 h/night	<6 h/night	<6 h/night	None
Moderate-High Score Model 1 Model 2 Model 3 Model 4	1.30 (1.03-1.63) 1.32 (1.05-1.66) 1.38 (1.07-1.78) 1.43 (1.08-1.88)	1.05 (0.82-1.34) 1.05 (0.82-1.34) 1.05 (0.80-1.38) 1.05 (0.78-1.40)	0.83 (0.60-1.14) 0.84 (0.61-1.16) 0.97 (0.68-1.40) 0.95 (0.64-1.42)	0.81 (0.67-0.97) 0.81 (0.68-0.98) 0.82 (0.67-1.00) 0.85 (0.68-1.06)

Model 1 is adjusted for age, sex, race/ethnicity

Model 2 is additionally adjusted for education

Model 3 is additionally adjusted for cigarette smoking, intentional exercise, and total energy intake Model 4 is additionally adjusted for BMI, hypertension, diabetes, depressive symptoms, AHI, antidepressant and anti-psychotic medications, insomnia symptoms or sleep duration

Odds ratio for associations between change in Mediterranean diet score and sleep: MESA Exams 1 & 5

Alternate Mediterranean Diet Score	Sleep duration 6-7 h/night vs <6 h/night	Sleep duration 7-8 h/night vs <6 h/night	Sleep duration >8 h/night vs <6 h/night	Insomnia Symptoms vs None
No change vs decrease Model 1 Model 2 Model 3 Model 4	1.05 (0.77-1.45) 1.07 (0.78-1.47) 1.04 (0.74-1.45) 0.98 (0.68-1.40)	1.11 (0.79-1.54) 1.10 (0.79-1.54) 1.13 (0.80-1.60) 1.06 (0.73-1.55)	1.08 (0.71-1.65) 1.09 (0.71-1.68) 1.13 (0.72-1.80) 0.96 (0.57-1.61)	0.64 (0.49-0.83) 0.64 (0.49-0.83) 0.65 (0.50-0.85) 0.61 (0.45-0.82)
Increase vs decrease Model 1 Model 2 Model 3 Model 4	1.35 (1.04-1.75) 1.36 (1.05-1.76) 1.30 (0.99-1.71) 1.34 (0.99-1.80)	1.30 (0.98-1.71) 1.29 (0.98-1.71) 1.26 (0.94-1.69) 1.30 (0.95-1.79)	1.04 (0.72-1.50) 1.04 (0.72-1.50) 1.18 (0.80-1.75) 1.15 (0.74-1.77)	0.90 (0.73-1.11) 0.90 (0.73-1.11) 0.90 (0.72-1.12) 0.92 (0.72-1.17)

Castro-Diehl et al. Sleep 2018;41:zsy158.

Biological plausibility for diet impact on sleep

- Tryptophan:
 - Essential amino acid
 - Primary substrate for melatonin synthesis
- Carbohydrates and gut microbiome involved in Trp metabolism
- Various dietary nutrients involved in enzymatic conversions of Trp to melatonin

Zuraikat et al. Ann Rev Nutr 2021;41:309-32.

Cycles of lifestyle behaviors & health

COLUMBIA VAGELOS COLLEGE OF PHYSICIANS AND SURGEONS

Zuraikat et al. Ann Rev Nutr 2021;41:309-32.

Thank you!

RAs & Fellows:

- Faris Zuraikat, PhD
- Rocio Barragan-Arnal, PhD
- Amy Roberts, Ph.D
- Ayanna Campbell, MS
- Ismel Salazar, MS
- Justin Cochran, MS
- Samantha Scaccia, MS
- Many IHN MS Students

Collaborators:

- Brooke Aggarwal, EdD
- Sanja Jelic, MD
- Blandine Laferrère, MD
- Ari Shechter, Ph.D

Funding:

- R01HL091352
- R01HL128226
- R01HL155670
- AHA 16SFRN27950012
- NYONRC DK-26687
- CTSA ULRR000041

Thank you for joining us today.

Become an Orgain Ambassador Today!

Request an Orgain Ambassador account to access our on-line sampling portal so you can share Orgain products and discount offers with your patients or clients.

healthcare.orgain.com/ambassador

Professional Education Series Support. Inform. Educate. Empower.

WEBINAR HOST:

Acacia Wright, RD, CD Sr. Manager of Nutrition Communications Orgain, LLC

Acacia.Wright@orgain.com

WEBINAR PRESENTER:

Marie-Pierre St-Onge, Ph.D, CCSH, FAHA Associate Professor of Nutritional Medicine, Director of Columbia University Irving Medical Center Sleep Center of Excellence

ms2554@cumc.columbia.edu

GENERAL INQUIRIES:

medinfo@orgain.com