Webinar will Becin Momentarily

Become an Orgain Ambassador Today!
Request an Orgain Ambassador account to access our on-line sampling portal so you can share Orgain products and discount offers with your patients or clients.

healthcare.orgain.com/ambassador

Orgain.

Professional Education Series

Support. Inform. Educate. Empower.

The Physiological Connections Between Diet \& Sleep and Associated Risks for Developing Chronic Diseases

TODAY'S AGENDA:

- Introduction \& Housekeeping
- Speaker Introduction
- Presentation
- Q\&A
- Closing

WEBINAR HOST:
Acacia Wright, RD, CD
Sr. Manager of Nutrition
Communications
Orgain, LLC

WEBINAR PRESENTER:
Marie-Pierre St-Onge, Ph.D, CCSH, FAHA
Associate Professor of Nutritional Medicine,
Director of Columbia University Irving
Medical Center Sleep center of Excellence

The Physiological Connections Between Diet \& Sleep: Associated Risks for Developing Chronic Diseases

Marie-Pierre St-Onge, PhD, CCSH, FAHA
Associate Professor, Division of General Medicine
Director, Center of Excellence for Sleep \& Circadian Research Department of Medicine, Columbia University Irving Medical Center

Learning Objectives

- Explain the relationships between sleep, obesity, and chronic diseases
- Epidemiological evidence
- Clinical intervention studies
- Describe mechanisms by which sleep influences obesity and chronic disease risk
- Short \& long-term effects of sleep restriction
- Patterns of sleep
- Discuss influence of diet on sleep
\leftrightarrows National Sleep Foundation

SLEEP DURATION RECOMMENDATIONS

Sleep Duration in Males vs Females: Weekdays vs Weekends

Weekdays

Weekends

In general, females report 20 minutes longer sleep than males across the lifespan \& fewer report short sleep duration

Rising prevalence of short sleep in US adults

Age-adjusted prevalence of sleeping $\leq 6 \mathrm{~h} /$ night:

- 1985: 22.3\%
- 2012: 29.2\%

Age-adjusted prevalence of sleeping 7-8 h/night:

- 1985: 65.9\%
- 2012: 62.8\%
B
$\log [$ Odds S SE

Heterogeneity: $\mathrm{Tau}^{2}=0.04 ; \mathrm{Chi}^{2}=13.93, \mathrm{df}=6(P=0.03) ; I^{2}=57 \%$ Test for overall effect: $Z=2.91(P=0.004)$
\qquad

Vgontzas 2013 Watanabe 2010 (women) Watanabe 2010 (men) Xiao 2013 (women) Xiao 2013 (men)

Sleep duration: 5.0-5.9 h

$\begin{array}{ll}0.5988 & 0.2954\end{array}$

$0.0862 \quad 0.0755$
$\begin{array}{lll}0.077 & 0.4137\end{array}$
$\begin{array}{rr}0.077 & 0.4137 \\ 1.0498 & 0.9928\end{array}$
$\begin{array}{lll}-1.0498 & 0.9928 & 0.1\end{array}$
$\begin{array}{lll}0.6471 & 0.1733 & 3.1 \\ 0.3148 & 0.1406 & 4.0\end{array}$
$\begin{array}{lll}0.3148 & 0.1406 & 4.0\end{array}$
$0.3716 \quad 0.1598 \quad 3.5$
19.5

$$
\begin{aligned}
& 1.82[1.02-3.25] \\
& 1.09[0.94-1.26] \\
& 1.08[0.48-2.43] \\
& 0.35[0.05-2.45] \\
& 1.91[1.36-2.68] \\
& 1.37[1.04-1.80] \\
& 1.45[1.06-1.98] \\
& 1.38[1.11-1.71]
\end{aligned}
$$

1.50 [1.10-2.05] 1.49 [1.32-1.68] 1.08 [0.77-1.55] 1.65 [1.22-2.23] 1.71 [1.01-2.89] 1.27 [0.89-1.81] 0.82 [0.40-1.68] 1.50 [1.25-1.80] 1.15 [1.05-1.26] $1.15[1.05-1.26]$
$1.03[0.93-1.14]$ $1.03[0.93-1.14]$
$\mathbf{1 . 3 0}[\mathbf{1 . 1 4 - 1 . 4 8]}$ 1.30 [1.14-1.48]

$0.4055 \quad 0.1582$

 0.39880 .0618 3.57.1 $0.077 \quad 0.1726-3.2$ $\begin{array}{lll}0.5008 & 0.154 & 3.6\end{array}$ $\begin{array}{lll}0.5365 & 0.2686 & 1.7\end{array}$ $0.239 \quad 0.1814$ $\begin{array}{lll}-0.1985 & 0.3663 & 1.0\end{array}$ $\begin{array}{lll}0.4055 & 0.093 & 5.8\end{array}$ $\begin{array}{lll}0.1398 & 0.0464 & 7.8\end{array}$ $0.0296 \quad 0.0521$
44.1

Increased odds of developing obesity in short sleepers

Kobayashi 2012
Kobayashi 2018
Nagai 2013
Stranges 2008
Theorell-Haglöw 2014
Vgontzas 2013
Watanabe 2010 (women)
Watanabe 2010 (men)
Xiao 2013 (women)
Xiao 2013 (men)
Subtotal (95% CI)
Test for overall effect: $Z=3.93(P<0.0001)$
Sleep duration: 6-7 h
Gutiérrrez-Repiso 2014 Kobayashi 2012
Kobayashi 2018
McMahon 2019
Nagai 2013
Stranges 2008
Vgontzas 2013
Watanabe 2010 (women)
Watanabe 2010 (men)
Subtotal (95% CI)
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=11.19, \mathrm{df}=8(P=0.19) ; I^{2}=28 \%$ Test for overall effect: $Z=3.21(P=0.001)$

Heterogeneity: $\mathrm{Tau}^{2}=0.02 ; \mathrm{Chi}^{2}=64.15, \mathrm{df}=25(P=0.0001) ; I^{2}=61 \%$
Test for overall effect: $Z=5.98(P<0.0001)$
Test for subgroup diferences: $\mathrm{Chi}^{2}=3.54, \mathrm{df}=2(P=0.17), I^{2}=43.6 \%$

1.0043	0.3158	1.3	$2.73[1.47-5.07]$
0.0953	0.0802	6.3	$1.10[0.94-1.29]$
0.174	0.0542	7.5	$1.19[1.07-1.32]$
0.2624	0.2672	1.7	$1.30[0.77-2.19]$
-0.0101	0.1024	5.4	$0.99[0.81-1.21]$
0.207	0.1005	5.5	$1.23[1.01-1.50]$
0.0296	0.4113	0.8	$1.03[0.46-2.31]$
0.0392	0.2892	1.5	$1.04[0.59-1.83]$
0.131	0.0772	6.5	$1.14[0.98-1.33]$
		$\mathbf{3 6 . 3}$	$\mathbf{1 . 1 6}[1.06-1.26]$

2.73 [1.47-5.07] 1.10 [0.94-1.29] 1.19 [1.07-1.32] 1.30 [0.77-2.19] 0.99 [0.81-1.21] 1.23 [1.01-1.50] 1.03 [0.46-2.31] 1.04 [0.59-1.83] $1.14[0.98-1.33]$ $1.16[1.06-1.26]$

Increased subclinical atherosclerotic burden associated with poor sleep

Increased odds of CVD in individuals with sleep problems: NHANES 2005-2008

	$\begin{gathered} \text { Model I } \\ \text { OR }(95 \% \mathrm{CI}) \\ p \end{gathered}$	$\begin{gathered} \text { Model } 2 \\ \text { OR }(95 \% \mathrm{CI}) \\ P \end{gathered}$	$\begin{gathered} \text { Model } 3 \\ \text { OR }(95 \% \mathrm{CI}) \\ \boldsymbol{P} \end{gathered}$
Sleep duration			
$<7 \mathrm{vs} .7-8 \mathrm{~h}$	$\begin{gathered} 1.57(1.26,1.97) \\ * * P P<0.001 \end{gathered}$	$\begin{gathered} 1.44(1.16,1.80) \\ * * P=0.008 \end{gathered}$	$\begin{gathered} 1.42(1.13,1.78) \\ * P=0.025 \end{gathered}$
>8vs. $7-8 \mathrm{~h}$	$\begin{gathered} 1.54(1.03,2.31) \\ { }^{*} P=0.047 \end{gathered}$	$\begin{gathered} 1.51(0.97,2.33) \\ P=0.092 \end{gathered}$	$\begin{gathered} 1.43(0.92,2.22) \\ P=0.163 \end{gathered}$
Sleep-onset latency time			
<5 vs. 5-30 min	$\begin{gathered} 0.79(0.59,1.06) \\ P=0.130 \end{gathered}$	$\begin{gathered} 0.77(0.58,1.03) \\ P=0.108 \end{gathered}$	$\begin{gathered} 0.77(0.57,1.02) \\ P=0.121 \end{gathered}$
>30 vs. $5-30 \mathrm{~min}$	$\begin{gathered} 1.77(1.35,2.32) \\ * * * P<0.001 \end{gathered}$	$\begin{gathered} 1.57(1.17,2.11) \\ { }^{*} P=0.012 \end{gathered}$	$\begin{gathered} 1.59(1.17,2.15) \\ * P=0.025 \end{gathered}$
Sleep problems No	Sleep problems		Reference
Yes	$\begin{gathered} 1.96(1.62,2.38) \\ * * * P<0.001 \end{gathered}$	$\begin{gathered} 1.74(1.42,2.13) \\ * * * P<0.001 \end{gathered}$	$\begin{gathered} 1.75(1.41,2.16) \\ * * P=0.001 \end{gathered}$
OSA symptoms			
No	Reference	Reference	Reference
Yes	$\begin{gathered} 1.32(1.08,1.61) \\ { }^{*} P=0.011 \end{gathered}$	$\begin{gathered} 1.13(0.91,1.40) \\ P=0.303 \end{gathered}$	$\begin{gathered} 1.12(0.89,1.40) \\ P=0.367 \end{gathered}$
Daytime sleepiness			
No	Reference	Reference	Reference
Yes	$\begin{gathered} 1.75(1.44,2.13) \\ * * P<0.001 \end{gathered}$	$\begin{gathered} 1.52(1.25,1.85) \\ * * P=0.001 \end{gathered}$	$\begin{gathered} 1.54(1.25,1.89) \\ * * P=0.004 \end{gathered}$

Sieep-onsel tatancy tme iminutes)

Increased risk of all-cause/CVD mortality in short \& long sleepers, NHANES 2005-2014

Associations between Life's Simple 7 and sleep quality in women

- low AHA LS7 and pour sleep quality
moderate to high AHA LS7 and poor sleep quality
mlow AHA LS7 and good sloep quality
moderate to high AHA LS7 and good sleep quality

Insomnia

- low AHA LS7 and insomnia
-moderate to high AHA LS7 and insomnia
Hlow AHA LS7 and no insomnia
-moderate to high AHA LS7 and no insomnia

OSA Risk

Poor sleep is associated with poor dietary intakes in women

Predictor	Outcome	B (SE)	p-value
Sleep quality (PSQI >5 vs. 55)	Food weight	79.6 (49.1)	0.106
	Added sugars	3.41 (1.57)	0.031
	\% Unsaturated fats	-1.41 (0.50)	0.005
	Energy intake	108 (82)	0.184
Sleep onset latency ($\leq 15 \mathrm{~m}$ vs. $>60 \mathrm{~m}$)	Food weight	235.2 (79.6)	0.003
	Added sugars	2.97 (2.59)	0.252
	\% Unsaturated fats	-0.95 (0.83)	0.253
	Energy intake	426 (132)	0.001
Insomnia (Yes vs. No)	Food weight	116.0 (48.8)	0.018
	Added sugars	1.87 (1.58)	0.235
	\% Unsaturated fats	-1.25 (0.50)	0.013
	Energy intake	205 (81)	0.012

*PSQI: Pittsburg Sleep Quality Index; SOL: Sleep Onset Latency; ISI: Insomnia Severity Index
**Models are adjusted for age, BMI, race/ethnicity, education, and health insurance status

Developing Life's Essential 8

Association of the AHA LS7 Score and Alternate CVH Scores that Include Sleep Metrics with CVD Incidence in Cox Proportional Hazards Models

Findings from epidemiological studies

- Short sleepers have risk of obesity than adequate sleepers
- Short \& disordered sleep is associated with higher CVD risk
- Poor sleep is associated with lifestyle behaviors that predict greater CVD risk

But what about causality?

Effects of sleep restriction on energy balance \& food intake regulation

Sleep restriction alters neuronal responses to foods

Food>Nonfood Restricted Sleep

- Food stimuli increased regional brain activity in the OFC, insula, and regions of the basal ganglia and limbic system after restricted sleep
- Restricted sleep induces a state of greater responsiveness to food stimuli and heightened awareness of the rewarding properties of food

How does the brain respond to food stimuli in the sleep restricted state?

- Unhealthy foods activate the areas of the brain associated with reward and hedonic functions
- Restricting sleep can increase salience of unhealthy food
- Restricting sleep promotes hedonic hunger
- During habitual sleep, up-regulation of the cognitive control centers
- Could signify improved food restraint behavior

How does sleep influence homeostatic controls of food intake?

> Leptin Ghrelin Hunger Appetite

- Increase tended to be greatest for calorie-dense high carbohydrate foods
- Increase in appetite for fruits and vegetables of lesser magnitude

Sleep restriction increassead d intake

Impact of sleep restriction on 24-hour energy expenditure

clock hour

Acute sleep restriction reduces physical activity

- Men spent either 4 or 8 h in bed for 2 nights
- Energy expenditure was measured by actigraphy during outpatient (day 1) and inpatient (day 2) days

Evidence of causality: Sleep restriction

2-week inpatient intervention:

- $\mathrm{N}=12$ (9 M)
- Age 26.5 ± 5.8 y
- BMI $24.6 \pm 3.7 \mathrm{~kg} / \mathrm{m}^{2}$
- Habitual sleep $7.4 \pm 1.0 \mathrm{~h}$
-SR=4.3 $\pm 0.4 \mathrm{~h} /$ night
- HS=8.0 $\pm 0.5 \mathrm{~h} /$ night

No difference in energy expenditure Difference in energy intake between conditions:

- $257 \mathrm{kcal} / \mathrm{d}$

Difference in change in body weight:

- 0.5 kg

Covassin et al. J Am Coll Cardiol 2022;79:1254-65

Meta-analysis of randomized clinical trials of sleep restriction: Body weight

Study or Subgroup The authors conclu, with weight gain effect, if any, Nose
 may be observes that reported food in tan din Teston is may be observed over reported included stuarts in duration." beyond 3 weeks in duration.

Effect of longer，milder sleep restriction on body weight

－Young，healthy males，age 20－30 y，BMI $19-26 \mathrm{~kg} / \mathrm{m}^{2}$
－Randomized to maintain regular sleep（7－7．5 h／night）or restrict their sleep by 1.5 h for 3 weeks
－Actual restriction $1 \mathrm{~h}: 13 \mathrm{~min}-1 \mathrm{~h}: 30 \mathrm{~min}$

Next step: What is the impact of 'life-like' sleep restriction conditions?

- To establish if there is a causal relation between sustained, mild sleep restriction (SR) and obesity risk using a randomized crossover clinical intervention
- 2 phases of 6 weeks with either habitual (adequate) sleep or sleep reduced by 1.5 h (delayed bedtimes)
- Participants have adequate sleep duration, $>7 \mathrm{~h} /$ night, at screening
- Determine effects of SR on body weight, body composition, and other lifestyle behaviors

Mild Sleep Restriction Increases Body Weight

- Sleep restriction results more eating occasions and longer eating window
- This is associated with higher energy intakes and worse diet quality

Sleep restriction increases sedentary behavior \& light physical activity in men and women

Increased by $12.5 \pm 1.1 \mathrm{~min} / \mathrm{d}$ over 6 wk in SR vs $\mathrm{AS}(\mathrm{P}<0.0001)$

Increased by $1.1 \pm 0.4 \mathrm{~min} / \mathrm{d}$ over 6 wk in SR relative to AS ($\mathrm{P}<0.01$)

Impact of Sleep Restriction on Moderate-toVigorous Physical Activity in Men and Women

Higher blood pressure in women undergoing short sleep duration

The effects of sleep restriction on 24-h systolic blood pressure were almost twice as high in post-menopausal compared to premenopausal women

Sleep restriction increases hematopoeisis

Impact of short \＆catch－up sleep on cardiometabolic risk factors

Impact of short \& catch-up sleep on food intake

Columbia

Dietary intakes across different categories of sleep variability in MESA

Diet Outcome	Sleep Duration SD				P-value for trend
	$\begin{gathered} \leq 60 \mathrm{~min} \\ (\mathrm{n}=673) \end{gathered}$	$\begin{gathered} 61-90 \mathrm{~min} \\ (\mathrm{n}=529) \end{gathered}$	$\begin{gathered} 91-120 \mathrm{~min} \\ (\mathrm{n}=392) \end{gathered}$	$\begin{gathered} >120 \text { min } \\ (n=311) \end{gathered}$	
aMed Score	4.27 ± 1.82	4.08 ± 1.86	4.11 ± 1.81	4.05 ± 1.80	<0.01
Fruits	1.34 ± 0.98	1.31 ± 1.08	1.31 ± 1.08	1.28 ± 1.09	0.002
Vegetables	1.18 ± 0.85	1.17 ± 0.87	1.19 ± 0.89	1.23 ± 0.95	0.212
Whole grains	0.63 ± 0.50	0.60 ± 0.48	0.59 ± 0.49	0.56 ± 0.52	<0.001
Nuts/Seeds	0.33 ± 0.35	0.27 ± 0.34	0.26 ± 0.34	0.23 ± 0.30	<0.01
Legumes	0.15 ± 0.17	0.17 ± 0.23	0.17 ± 0.21	0.16 ± 0.23	0.802
Red meat	0.24 ± 0.19	0.22 ± 0.20	0.25 ± 0.21	0.24 ± 0.20	0.090
Fish	0.15 ± 0.15	0.16 ± 0.20	0.17 ± 0.16	0.20 ± 0.20	<0.01
Alcohol	3.41 ± 9.32	3.17 ± 7.84	2.69 ± 5.60	2.70 ± 6.18	0.873
MUFA	14.33 ± 4.01	14.14 ± 3.94	14.23 ± 4.05	14.45 ± 4.04	0.358
Saturated fat	10.41 ± 3.21	10.52 ± 3.06	10.16 ± 3.18	10.60 ± 3.22	0.043
Energy intake	1692 ± 770	1688 ± 775	1735 ± 869	1778 ± 914	0.01

Diet variables energy adjusted as: servings/1000 kcal (fruits, vegetables, whole grains, nuts/seeds, legumes, red meat, fish),
\%kcal (MUFA, SFA), g/1000 kcal (alcohol)

High sleep variability \& short sleep duration associated with reduced weight loss

- Participants in PREDIMED-Plus, a Mediterranean diet intervention with vs without caloric restriction
- Adults, $55-75 \mathrm{y}$, with $\mathrm{BMI} 27-40 \mathrm{~kg} / \mathrm{m}^{2}$

Tertiles of sleep variability (h)					
1 (lowest)	2	3 (highest)	p Value 2 vs $1 \quad p$ Value 3 vs 1		

p Value
Weight, kg

n	630	629	629			1888	
12-month change	-2.3 (-2.6 to -2.0)	$-2.1(-2.5$ to -1.8$)$	$-1.7(-2.0$ to -1.4$)$			$-2.1(-2.2$ to -1.9$)$	
Difference vs first tertile ${ }^{\text {a }}$	0 (ref.)	0.1 (-0.3 to 0.5)	0.5 (0.1 to 0.9)	0.553	0.020	0.95 (0.06 to 1.8)	0.037
Difference vs first tertile ${ }^{\text {b }}$	0 (ref.)	0.1 (-0.3 to 0.6)	0.5 (0.1 to 0.9)	0548	0.021	0.88 (-0.01 to 1.8)	0.052
Body mass index, $\mathrm{kg} / \mathrm{m}^{2}$							
n	628	628	627			1888	
12-month change	$-0.8(-0.9$ to -0.7$)$	-0.8 (-0.9 to -0.6)	$-0.6(-0.7$ to -0.5$)$			$-0.7(-0.8$ to -0.7$)$	
Difference vs first tertile ${ }^{\text {a }}$	0 (ref.)	0.06 (-0.1 to 0.2)	0.2 (0.04 to 0.4)	0.481	0.016	0.36 (0.03 to 0.7)	0.033
Difference vs first tertile ${ }^{\text {b }}$	0 (ref.)	0.05 (-0.1 to 0.2)	0.2 (0.04 to 0.4)	0.507	0.015	0.34 (0.01 to 0.7)	0.043
Waist circumference, cm							
n	600	599	599			1888	
12-month change	$-2.5(-3.0$ to -2.1$)$	-2.6 (-3.0 to -2.1)	$-1.9(-2.3$ to -1.4$)$			$-2.3(-2.6$ to -2.1$)$	
Difference vs first tertile ${ }^{\text {a }}$	0 (ref.)	$-0.2(-0.8$ to 0.4)	0.4 (-0.1 to 1.0)	0.496	0.148	0.7 (-0.5 to 1.9$)$	0.247
Difference vs first tertile ${ }^{\text {b }}$	0 (ref.)	$-0.1(-0.7$ to 0.4)	$0.4(-0.2$ to 1.0)	0.536	0.156	0.6 (-0.6 to 1.7)	0.345

Sleep stability \& body composition

$\mathrm{N}=36$ women
Age ≥ 20 y
BMI $20-33 \mathrm{~kg} / \mathrm{m}^{2}$
Habitual sleep $\geq 7 \mathrm{~h} /$ night
Undergoing 6-wk period of maintained adequate sleep with prescribed bed and wake times based on usual habits
Grouped by change in bedtime variability from screening

Variable	Increased/same bedtime variability ($N=8$)	Reduced bedtime variability $(N=29)$	P value*
Age, years	36.9 ± 15.0	34.4 ± 11.8	0.621
Race			0.663
White	5 (63)	14 (48)	
Other	3 (37)	15 (52)	
Baseline weight, kg	62.2 ± 5.0	66.5 ± 7.8	0.153
Baseline BMI, $\mathrm{kg} / \mathrm{m}^{2}$	23.5 ± 2.1	25.1 ± 3.0	0.190
Baseline sleep duration, min	453.3 ± 29.3	455.2 ± 30.2	0.875
Baseline bedtime	12:00 a.m.	10:48 p.m.	0.109
Baseline bedtime SD, min	49.7 ± 9.5	57.2 ± 27.4	0.218
Weight change, kg	0.48 ± 1.19	-0.66 ± 1.37	0.059
TAT change, $\mathrm{L}^{\text {a }}$	0.63 ± 0.41	-0.52 ± 0.98	<0.001
VAT change, L	0.05 ± 0.17	-0.03 ± 0.10	0.297
SAT change, L	0.56 ± 0.31	-0.48 ± 0.86	<0.001
WBV no lungs change, L	0.23 ± 0.91	-0.75 ± 0.90	0.016
IMAT change, L	0.03 ± 0.03	-0.01 ± 0.12	0.134
SM change, L	-0.08 ± 0.49	-0.19 ± 0.47	0.602
Leukocyte platelet aggregates, $\%^{\text {b }}$	8.42 ± 16.59	-8.42 ± 10.82	0.011

Sleep is Integral to Good Lifestyle Habits Compatible With Cardiovascular Health

Food intake during a controlled diet vs ad lib diet when sleep is sufficient

Nutrient content	Controlled diet	Ad lib diet
Energy，kcal	$\mathbf{2 0 5 5}$	2518
Protein，\％En	17	14
Carbohydrates，\％En	53	54.6
Fat，\％En	31	32.7
Saturated fat，\％En	7.5	10

Sleep after a controlled diet vs ad lib diet

Sleep parameter	Controlled diet	Ad lib diet	P－ value
Total sleep time，min	453.5 ± 44.4	455.1 ± 30.2	0.86
Stage 1，min	52.3 ± 21.8	56.2 ± 18.8	0.18
Stage 2，min	240.3 ± 42.9	245.8 ± 35.5	0.45
Slow wave sleep，min	29.3 ± 13.9	$\mathbf{2 4 . 6} \pm 12.8$	$\mathbf{0 . 0 4 3}$
Rapid－eye movement sleep， min	91.6 ± 17.8	96.4 ± 18.2	0.19
Sleep onset latency，min	16.9 ± 11.1	$\mathbf{2 9 . 2} \pm \mathbf{2 3 . 1}$	$\mathbf{0 . 0 0 8 5}$
Arousals	143.2 ± 52.1	143.4 ± 51.9	0.98

Relation between diet and sleep after a day of ad lib intakes

Sleep parameter	Fiber，g	Sugar，\％En	Non－sugar／non－ fiber CHO，\％En	Saturated fat，\％En
Stage 1， \％sleep time	$\mathbf{- 0 . 1 9} \pm \mathbf{0 . 0 7}$	0.08 ± 0.17	0.04 ± 0.03	0.03 ± 0.21
Slow wave sleep， \％sleep time	$\mathbf{0 . 2 6} \pm \mathbf{0 . 1 1}$	-0.18 ± 0.25	-0.04 ± 0.04	$-\mathbf{0 . 7 1} \pm \mathbf{0 . 3 2}$
Arousals	-0.11 ± 0.81	$\mathbf{4 . 3 4} \pm 1.86$	$\mathbf{0 . 6 6} \pm \mathbf{0 . 3 1}$	2.17 ± 2.40

Data suggest that a high－fiber diet，with low intake of sugars，is associated with better sleep depth and architecture

Could diet improve sleep in those with sleep disorders？？

Adherence to Mediterranean Diet associated with sleep quality at 1 y

Predictor	Outcome	β (SE) ${ }^{\text {b }}$	p-Value	β (SE) ${ }^{\text {c }}$	p-Value
aMed diet score	PSQI total score	-0.30 (0.10)	<0.01	-0.31 (0.08)	<0.0001
	Sleep onset latency	-0.61 (0.65)	0.35	-0.71 (0.59)	0.23
	Sleep efficiency	1.20 (0.35)	<0.001	1.21 (0.33)	<0.001
	Sleep disturbances	-0.30(0.12)	0.01	-0.35 (0.10)	<0.001
Fruits and vegetables	PSQI total score	-0.16 (0.07)	0.02	-0.19 (0.05)	<0.001
	Sleep onset latency	-0.41 (0.44)	0.36	-0.31 (0.40)	0.44
	Sleep efficiency	0.56 (0.24)	0.02	0.52 (0.22)	0.02
	Sleep disturbances	-0.18 (0.08)	0.03	-0.15 (0.07)	0.02
Legumes	PSQI total score	-0.10 (0.16)	0.55	-0.24 (0.13)	0.06
	Sleep onset latency	-1.13 (1.03)	0.27	-1.21 (0.94)	0.20
	Sleep efficiency	1.36 (0.55)	0.01	1.46 (0.52)	<0.01
	Sleep disturbances	0.17 (0.19)	0.39	-0.08 (0.16)	0.62
Nuts	PSQI total score	0.01 (0.21)	0.96	0.02 (0.17)	0.92
	Sleep onset latency	0.09 (1.35)	0.95	0.25 (1.23)	0.84
	Sleep efficiency	-0.47 (0.72)	0.51	-0.36 (0.68)	0.60
	Sleep disturbances	-0.26 (0.25)	0.31	$-0.09(0.20)$	0.65
Dark breads	PSQI total score	-0.68(0.39)	0.08	-0.55 (0.30)	0.07
	Sleep onset latency	-0.94 (2.48)	0.71	-1.09 (2.26)	0.63
	Sleep efficiency	2.07 (1.33)	0.12	1.96 (1.26)	0.12
	Sleep disturbances	-0.43 (0.47)	0.36	-0.67 (0.38)	0.08

Odds ratio for associations between Mediterranean diet score and sleep: MESA Exam 5

Alternate Mediterranean Diet Score	Sleep duration 6-7 h/night vs $<6 \mathrm{~h} / \mathrm{night}$	Sleep duration 7-8 h/night vs $<6 \mathrm{~h} / \mathrm{night}$	Sleep duration $>8 \mathrm{~h} / \mathrm{night}$ vs $<6 \mathrm{~h} / \mathrm{night}$	Insomnia Symptoms vs None
Moderate-High Score				
Model 1	1.30 (1.03-1.63)	1.05 (0.82-1.34)	0.83 (0.60-1.14)	0.81 (0.67-0.97)
Model 2	1.32 (1.05-1.66)	1.05 (0.82-1.34)	0.84 (0.61-1.16)	0.81 (0.68-0.98)
Model 3	1.38 (1.07-1.78)	1.05 (0.80-1.38)	0.97 (0.68-1.40)	0.82 (0.67-1.00)
Model 4	1.43 (1.08-1.88)	1.05 (0.78-1.40)	0.95 (0.64-1.42)	0.85 (0.68-1.06)

Model 1 is adjusted for age, sex, race/ethnicity
Model 2 is additionally adjusted for education
Model 3 is additionally adjusted for cigarette smoking, intentional exercise, and total energy intake Model 4 is additionally adjusted for BMI, hypertension, diabetes, depressive symptoms, AHI, antidepressant and anti-psychotic medications, insomnia symptoms or sleep duration

Odds ratio for associations between change in Mediterranean diet score and sleep: MESA Exams 1 \& 5

Alternate Mediterranean Diet Score	Sleep duration 6-7 h/night vs <6 h/night	Sleep duration 7-8 h/night vs $<6 \mathrm{~h} / \mathrm{night}$	Sleep duration $>8 \mathrm{~h} / \mathrm{night}$ vs $<6 \mathrm{~h} / \mathrm{night}$	Insomnia Symptoms vs None
No change vs decrease				
Model 1	1.05 (0.77-1.45)	1.11 (0.79-1.54)	1.08 (0.71-1.65)	0.64 (0.49-0.83)
Model 2	1.07 (0.78-1.47)	1.10 (0.79-1.54)	1.09 (0.71-1.68)	0.64 (0.49-0.83)
Model 3	1.04 (0.74-1.45)	1.13 (0.80-1.60)	1.13 (0.72-1.80)	0.65 (0.50-0.85)
Model 4	0.98 (0.68-1.40)	1.06 (0.73-1.55)	0.96 (0.57-1.61)	0.61 (0.45-0.82)
Increase vs decrease				
Model 1	1.35 (1.04-1.75)	1.30 (0.98-1.71)	1.04 (0.72-1.50)	0.90 (0.73-1.11)
Model 2	1.36 (1.05-1.76)	1.29 (0.98-1.71)	1.04 (0.72-1.50)	0.90 (0.73-1.11)
Model 3	1.30 (0.99-1.71)	1.26 (0.94-1.69)	1.18 (0.80-1.75)	0.90 (0.72-1.12)
Model 4	1.34 (0.99-1.80)	1.30 (0.95-1. 79)	1.15 (0.74-1.77)	0.92 (0.72-1.17)

Biological plausibility for diet impact on sleep

- Tryptophan:
- Essential amino acid
- Primary substrate for melatonin synthesis
- Carbohydrates and gut microbiome involved in Trp metabolism
- Various dietary nutrients involved in enzymatic conversions of Trp to melatonin

Cycles of lifestyle behaviors \& health

Thank you！

RAs \＆Fellows：
－Faris Zuraikat，PhD
－Rocio Barragan－Arnal，PhD
－Amy Roberts，Ph．D
－Ayanna Campbell，MS
－Ismel Salazar，MS
－Justin Cochran，MS
－Samantha Scaccia，MS
－Many IHN MS Students

Collaborators：
－Brooke Aggarwal，EdD
－Sanja Jelic，MD
－Blandine Laferrère，MD
－Ari Shechter，Ph．D

Funding：
－R01HL091352
－R01HL128226
－R01HL155670
－AHA 16SFRN27950012
－NYONRC DK－26687
－CTSA ULRR000041

Thank you for joining us today.

Become an Orgain Ambassador Today!
Request an Orgain Ambassador account to access our on-line sampling portal so you can share Orgain products and discount offers with your patients or clients.

healthcare.orgain.com/ambassador

Orgain.

Professional Education Series

Support. Inform. Educate. Empower.

WEBINAR HOST:

Acacia Wright, RD, CD
Sr. Manager of Nutrition
Communications
Orgain, LLC
Acacia.Wright@orgain.com

WEBINAR PRESENTER:
Marie-Pierre St-Onge, Ph.D, CCSH, FAHA
Associate Professor of Nutritional
Medicine, Director of Columbia
University Irving Medical Center Sleep Center of Excellence
ms2554@cumc.columbia.edu

GENERAL INQUIRIES:

medinfo@orgain.com

